
1 © 2015 IOP Publishing Ltd Printed in the UK

1. Introduction

The development of models and simulation techniques for 
electrical discharges has been ongoing for more than !ve 
decades. Here we focus on models for streamer discharges, 
which are rapidly growing ionized channels that are non-lin-
early controlled by space charge effects. In these discharges, 
electric !elds and electron energies are getting particularly 
high in the ionization front. Streamers occur in nature (light-
ning and sprites [2, 3]) and technology (plasma-assisted 
combustion [4], plasma medicine [5], disinfection [6] etc). 
Streamer models can be categorized into four types: particle 
models, kinetic models, "uid models and hybrid models.

Particle models are typically of the particle-in-cell (PIC) 
type. With these models, a large number of particles is fol-
lowed as they move through the simulation domain, so that 
one has direct information about the particle distribution 

in phase space [7, 8]. Particle models have few underlying 
assumptions or approximations, and therefore give accurate 
predictions over a wide range of conditions, but they are com-
putationally relatively expensive. In recent years, particle 
codes that use graphics processing units (GPUs) have shown 
promising speed-ups [9].

The second type of models are the so-called kinetic 
models, that couple the full Boltzmann equation# with the 
Poisson equation. Such models are computationally very 
costly, because they require a numerical grid that covers the 
full phase space. However, advances in computing power and 
algorithms have made some of these fully kinetic simulations 
possible [10, 11].

The third type of models are the plasma "uid models, 
which describe the electron dynamics in plasma based on 
macroscopic quantities like electron density, average elec-
tron velocity, average electron energy etc. Fluid models 
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are typically constructed by taking the velocity moments 
of the Boltzmann equation. Depending on the number of 
moments considered and the closure assumptions, different 
"uid models have been derived over the last four decades  
[1, 12Ð16]. Fluid models require less computational resources 
than particle models, yet they can provide reasonably accu-
rate results.

Finally, hybrid models combine the strengths of the "uid 
and particle approaches, by combining the fast speed of "uid 
simulations with the accurate particle kinetics of particle 
models. Different types of hybrid models can be constructed. 
In some applications, a particle model is used to follow 
high-energy electrons while low energy electrons and ions 
are treated as "uid [17]. Alternatively, one can use different 
models in different spatial regions [18].

In the present paper we consider three plasma "uid models: 
the !rst order reaction-drift-diffusion model based on the local 
!eld approximation; the second order reaction-drift-diffusion 
model based on the local energy approximation and a recently 
developed high order "uid model. We investigate how well 
these models can simulate ionization waves in 1D, by com-
paring them with a PIC code. Such ionization waves can be 
seen as the 1D version of streamer channels.

In [19], part of this model comparison has already been 
carried out. Here, we extend our previous work in the fol-
lowing way:

 �- Compared to [19], we now include an additional model, 
namely the second order reaction-drift-diffusion model 
with an energy equation.

 �- In [19], simulations were carried out in nitrogen only, 
here we consider both neon and nitrogen at standard 
temperature and pressure (STP). The major difference 
between these two gases is that neon is an atomic gas and 
nitrogen a molecular gas, see also the discussion below.

 �- Here, we also discuss some of the more practical aspects 
that are important when using the models.

Compared to nitrogen, neon has fewer inelastic channels, 
with higher threshold energies. Because neon is an atomic 
gas, it does not have the vibrational and rotational excita-
tions of nitrogen. This means that, even though the ionization 
energy is higher, neon discharges can be generated in lower 
electric !elds, due to the smaller energy loss in inelastic chan-
nels. Furthermore, certain non-local phenomena, such as a 
high electron energy in the streamer channel (despite the elec-
trical screening there), are more pronounced. Neon is also fre-
quently used in industry (e.g. neon lamps, plasma medicine).

In this paper we use a one-dimensional ionization wave 
as a test problem. An ionization wave forms when an elec-
tric !eld above the breakdown threshold is applied. Electrons 
move in the !eld and produce electron-impact ionization, and 
after some time the degree of ionization is suf!cient to create 
an electrically screened region. As mentioned above, such 
ionization waves can be seen as the one-dimensional equiva-
lent of streamer channels [20]. There are a couple of important 
differences between one-dimensional ionization waves and 
streamers, however:

 �- Streamer channels enhance the electric !eld at their tips, 
just like elongated conductors. This !eld enhancement 
depends on the curvature of the streamer head, and is 
therefore missing in a one-dimensional ionization wave 
without curvature.

 �- The electric !eld ahead of an ionization wave does not 
naturally decay like it does for a streamer with local !eld 
enhancement. This can make the 1D ionization wave a 
harder test problem than ÔstreamerÕ tests in 2D/3D: the 
growth in the whole region ahead of the front needs to be 
accurately described [21].

 �- As a streamer channel grows, more charge is required 
at its tips to screen the interior electric !eld. This gener-
ates an internal current, and therefore an internal electric 
!eld. For an ionization wave in a constant background 
!eld no such current is required, and its internal !eld is 
completely screened.

The structure of the paper is as follows. In section#2, we 
discuss the origin of the different "uid models (the Boltzmann 
equation). In sections#2.1 and 2.3, we brie"y summarize the 
derivation and the underlying assumptions of the !rst and 
high order "uid model. In section#2.2, we present the second 
order "uid model. We shortly discuss the particle model in 
section#5. In section#5 the transport data for neon, which are 
used in the "uid models, are described in some detail. The 
simulation conditions that we use for comparing the models 
are discussed in section#5, and the results of the comparison 
are given in section#6. In section#7 we discuss our results in 
more detail and we give our conclusions in section#8.

2. Fluid models for streamer discharges

The dynamics of a system of charged particles can be 
described microscopically by the Boltzmann equation#or by 
the Particle-in-Cell Monte Carlo (PIC/MC) technique. While 
the latter one follows individual particles in phase space [22], 
the former one describes the ensemble of particles by the dis-
tribution function, or phase density, ( )r cf t, ,i  in phase space 
( )r c,  for particle species i at time t. The evolution of distribu-
tion function is described by the Boltzmann equation#[23Ð26]:

( )! + " # + " # = $c Ef f
e
m

f J f f, .ct i i
i

i
i i 0 (1)

where !  is the differential operator with respect to space r 
and ! c with respect to velocity c, ei and mi are charge and 
mass of species i, and t is time. The right-hand side of equa-
tion#(1), ( )J f f,i 0 , describes the collisions of charged particles 
with neutral molecules, accounting for elastic, inelastic, and 
non-conservative (e.g. ionizing or attaching) collisions, and f 0 
is the velocity distribution function of the neutral gas (usually 
taken to be Maxwellian at !xed temperature).

If we work under electrostatic conditions, then space charge 
effects can be accounted for by coupling the Boltzmann equa-
tion#to PoissonÕs equation:

( )!" = #
!

rV q n t
1

, ,
i

i i
2

0
 (2)

Plasma Sources Sci. Technol. 24 (2015) 065002



A H Markosyan et al

3

so that the electric !eld can be calculated by:

= ! "E V, (3)

where V is electric potential, ! 0 is the dielectric permittivity, 
and qi and ni are the charge and density of species i (electrons, 
ions, excited states etc). One should note that the Boltzmann 
equation#provides a complete description of the distribution 
in phase space of species i, while the density ni in equa-
tion# (2) is a macroscopic (averaged) quantity. The number 
density ni can be directly calculated from the distribution 
function ( )r cf t, ,i :

( ) ( )!=r r c cn t f t, , , d .i i (4)

For most applications, especially those that require two or 
three spatial dimensions, it is not feasible to solve the system 
(1)Ð(3) with direct numerical simulations. An alternative 
approach is to consider the velocity moments of distribution 
function:

( )
( )

( ) ( )!! !=c
r

c r c c
n t

f t
1
,

, , d , (5)

with ( )! = Éc c cm mc mc1, , , ,1
2

2 1
2

2  giving the average velocity 

! "=v c , average energy ! "! = mc1
2

2 , average electron energy 
"ux ! "! = cmc1

2
2  and so on.  < >  represents the average over 

the velocity c of the charged particles. Using this approach, 
the set of moment equations#can be found by multiplying (1) 
by ( )! c  and integrating over the velocity space:

( ( ) ) ( ( ) ) ( )! ! !! + " # $ # " = !c c c E cn n n
e
m

C ,ct (6)

where !C  is the collision term:

( ) ( )! != "! c cC J f d . (7)

To derive the term ( )!! cc , a partial integration over c has 
been performed.

In the following subsections we present different models 
with respect to the number of moments considered. Except for 
the high order model, these models have been frequently used 
over the last few decades. We give a short list with the main 
assumptions present in the models.

2.1. The !rst-order or classical model

The !rst order model, also called classical model, is the sim-
plest and most used model considered in this work [1, 15, 17, 
20, 27Ð33]. For the full and strict derivation we refer to [1, 
15]. This model considers only the !rst two balance laws from 
the system (6). For electrons and ions it reads as:

!! = " # + # " +En ! E n D E n n E ,t I( ( ) ( ) ) ( ) (8)

!! =n n E ,t Iion ( ) (9)

where = | |EE , nion is ion density and where mobility µ, dif-
fusion D and ! I are functions of the local electric !eld. In 
equation#(9) we assume that the displacement of ions is neg-
ligible (e.g. when considering short time scales). Of course, 

the system (8) and (9) is coupled to the Poisson equation#(2) 
and(3) which in 1D has the following simple form:

( )
!
!

= "
!

E
x

e
n n .

0
ion (10)

During derivation of this model the following assumptions are 
made:

 (i) the distribution of random velocities is close to isotropic. 
This is a strong assumption for streamer discharges, 
where at the streamer tip the electric !eld is locally very 
high and strong pressure gradients exists,

 (ii)  the momentum transfer by collisions != ! vC nmmc eff , 
where ! eff is the effective momentum transfer collision fre-
quency, which accounts for momentum transfer exchange 
only in elastic and inelastic collisions,

 (iii)  the source term in the mass balance equation#is !=C n I1 , 
where ! I is the ionization collision frequencies due to elec-
tron-molecule collisions, for non-attaching gases.

 (iv) the rate of momentum change is smaller than the rate of 
momentum transfer ! eff,

 (v) as a further simpli!cation all transport properties are 
functions of the local electric !eld, i.e. the Local Field 
Approximation (LFA) is used.

 (vi) the system is close to equilibrium and the Nernst-
Townsend-Einstein relation µ =D kT e/ /  is valid, where 
D is the diffusion constant, µ is the electron mobility and 
T is the electron temperature,

We would like to remark that, when the classical "uid 
model is derived from the Boltzmann equation#(1), the diffu-
sion coef!cient, strictly speaking, is a scalar. But in the case 
of streamer discharges, the diffusion tensor can be strongly 
anisotropic. A few authors have considered this anisotropic 
diffusion [18, 34]. Particularly, in [34] the effect of anisotropic 
diffusion on branching phenomena of negative streamers is 
investigated. In [18, 35, 36] a phenomenological extension 
of the classical "uid model based on a gradient expansion of 
electron density is provided. In what follows, the classical 
"uid model will be denoted by LFA.

2.2. The second-order model

The second order model also considers the energy balance 
equation. Depending on the closure assumption, one can 
obtain conceptually different second-order models. In this 
section# we discuss the model called LEA (Local Energy 
Approximation), which originates (to our knowledge) from 
[37Ð39]. This model has been used by many others in different 
applications [13, 17, 18, 40Ð50] and reads as follows:

( )! "!! = "# $ +n n ,t I (11)

( )! "! =n n ,t Iion (12)

( ) ( ) !! ! !! !" = # $ % + % #En n k
5
3

,t j j j (13)
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! !Γ = ! ! "Enμ D n.( ) ( ) (14)

The following assumption underline in derivation of this 
model:

 (i) the assumptions (i)Ð(vi) from the section#2.1 are valid, 
i.e we have equation#(8), but with transport parameters 
depending on local average electron energy,

 (ii)  the total energy transfer (losses) is due to the elastic and 
inelastic collisions:

! !=!C n k ,
j

j j (15)

  where kj and ! j are the collision rate coef!cient and energy 
loss per electron per collision (elastic, inelastic) for the 
collision process denoted by j,

 (iii)  the pressure tensor is simpli!ed to != !P T Ink n2
3

,
 (iv) the heat "ux vector q is assumed to be proportional to the 

gradient of the electron average energy != ! "q nD5
3

, 
where D is the diffusion coef!cient,

 (v) all transport properties are functions of the local average 
electron energy, i.e. the Local Energy Approximation 
(LEA) is used.

This system is again coupled with the Poisson equa-
tion#(10). As illustrated by Hagelaar and Pitchford [40], the 
LEA model is consistent with classical theory for electron 
transport based on the two term approximation for solving the 
Boltzmann equation.

Markosyan et al [19] have investigated the importance of 
the energy "ux equation# by deriving a second-order model 
with neglected energy "ux term. A similar system has been 
derived by Kanzari et al [14]. Eichwald et al [13] used a 
similar approach to simulate streamer dynamics and radical 
formation in a pulsed corona discharge used for "ue gases. 
Guo and Wu [49] have developed a more sophisticated second 
order model in which the Langevin theory was used to sim-
plify the collision source terms with a priori knowledge of the 
relaxation times of electron energy and momentum. Another, 
recent, second order model has been derived by Becker et al 
[51] as a simpli!cation of their more complete model con-
taining four moments [16]. They illustrate that this simpli!ca-
tion can be done without loss of accuracy, if the characteristic 
frequency of the electric !eld alteration in the discharge is 
small in comparison with the momentum dissipation fre-
quency of the electrons [16].

2.3. The high-order model

The high-order "uid model considered in this paper has 
recently been derived in [1, 19], where the in!nite system of 
moment equation#(6) is truncated at the level of energy "ux 
balance by approximating the pressure tensor with a scalar 
kinetic pressure. The collisional terms were evaluated using 
momentum transfer theory [52Ð54]. For more details of the 
derivation we refer to [1]. The high order "uid model consists 
of balance laws for the electron density n, for the average elec-
tron velocity v, for the average electron energy !  and for the 
average electron energy "ux ! :

!
!
!

+ " # =v
n
t

n n ,I (16)

( ) ( ) ( )! " "
!
!

+ " # = # +v E v
t

n
m

n n
e
m

n
2

3
,m I (17)

( ) ( ) ( )!! " !
!
!

+ " # $ # = $ $ + %! "
#

$%
&
'

(
)

*

+,
E v

t
n n e n n kT

3
2

,e 0

 (18)

( )! !! " " #
!
!

+ " # = #! "
#
$

%
&

E
t

n
n
m

n e n
2
3

5
3

,m
2 (19)

where E is the electric !eld, m and e are electron mass and 
charge, T0 is gas temperature and k is the Boltzmann con-
stant. The average collision frequencies for momentum ! m and 
energy transfer in elastic collisions !e are de!ned in [1], ! I 
is the ionization rate coef!cient. The term !  represents the 
average energy lost in one energy relaxation time ! !

e
1 and 

is given in [1]. "  is a parameter introduced to approximate 
the high order tensors in the energy "ux equation#in terms of 
lower moments [1].

In the system (16)Ð(19) the following assumptions are 
present:

 (i) !=C n I1 ,
 (ii)  the momentum transfer approximation is employed [1] to 

evaluate collisional terms,

 (iii)  the pressure tensor is simpli!ed to != !P T Ink n2
3

,

 (iv) the temperature tensor is isotropic, and hence ! " ! "!cc Ic
3

2

 (v) the higher order tensor ccc2  appearing in the energy 
"ux balance equation can be expressed by a product 
of the lower order moments as !! !cc ccc c2 2 ! "  

! " ! "! ! "=I Ic c

m
2

3
4

3
2

2

2 . "  is a parametrization factor, 

generically close to unity, when the higher order correla-
tion term ! " ! "! "!cc ccc c2 2  can be neglected [1, 19],

 (vi) following original papers [1, 19], in this work "  is consid-
ered to be equal to 1.

As we have already mentioned, an alternative approach has 
been described by Becker et al [16].

3. The MC particle model

As a reference model we use a Particle-in-Cell Monte Carlo 
(PIC/MC) code. We assume that PIC/MC model can simulate 
the full physics of ionization waves in 1D, so that agreement 
between a "uid model and the PIC/MC results can validate 
the "uid model.

Of course, the cross-sections used in the PIC code also 
have to be used to generate the coef!cients of the "uid model 
(e.g. the mobility or ionization rate). This is discussed in more 
detail in the next section.

The construction of a planar front is straightforward in 
"uid models, as the spatial derivatives are simply evaluated 
in one direction only. However, in the particle model elec-
trons move in all three spatial dimensions and hence, the 
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three-dimensional setting has to be restricted as in previous 
work [7, 19].

4. Transport parameters

In this section#we brie"y discuss how the transport data for 
electrons are calculated and implemented in our "uid models 
of negative planar streamer fronts. The electron transport 
data employed in this work are calculated using a multi-term 
theory for solving the Boltzmann equation. The methods and 
techniques are by now standard and the readers are referred to 
our previous work [23, 52].

Transport and reaction data for electrons in N2 have been 
recently published [1, 55, 56] and in this paper the emphasis 
is placed upon the data for electrons in Ne. Calculations of 
transport data at a temperature of 293 K are performed for 
reduced electric !elds (E/n0) ranging from ! " !"1 10 1 104 3 
Td (1 Td  =   ! "1 10 21 Vm2). The !rst-order model is based on 
the local !eld approximation; it requires the electron mobility, 
diffusion coef!cient and ionization rate as a function of the 
reduced electric !eld E/n0 (where n0 is the gas number den-
sity). The second-order model is based on the local mean 
energy approximation and the transport data, including elec-
tron mobility, diffusion coef!cient and ionization rate as well 
as rate coef!cients for relevant processes are functions of the 
electron mean energy. The correspondence between the mean 
energy and E/n0 is used to !nd transport data for a given mean 
energy. The high-order "uid model requires average collision 
frequencies for momentum and energy transfer in elastic and 
inelastic collisions, and rate coef!cients for all collision pro-
cesses as a function of the mean electron energy. As for the 
second-order model, the correspondence between the mean 
energy and E/n0 is used to !nd the collision frequencies. The 
momentum transfer collision frequency has not been deter-
mined directly from the cross sections#but rather from the fol-
lowing equation:

( )
!

µ "
=

e
m

,m (20)

where e and m are the electron charge and mass, respectively, 
and ( )µ !  is the electron mobility which is here a function of the 
mean energy. Since momentum transfer theory [1, 52] is used 
to determine the transfer of energy in the "uid equations, we 
use the following expression for the average energy lost in one 
energy relaxation time ! !

e
1, through non-elastic processes [1, 52]

( )
( )( ) ( )

( )! !!
" "

"
"
"

" =
+

#
+ $

#

# #
#! !

m
m m

.
s

e i

I
i

e
I
i0

0
 (21)

The inelastic channels # are governed by threshold energies 
!!  and collision frequencies for inelastic and superelastic 

processes ! "  and ( )! "
s , respectively. All collision frequencies 

(including the ionization collision frequencies ( )! I
i ) depend on 

the electron mean energy. The collision frequency for energy 
transfer in elastic collisions !e is de!ned by equation#(43) in 
Dujko et al [1].

The PIC/MC model requires a set of cross sections#for 
electron scattering in Ne. This work considers negative 

planar streamer fronts in Ne using the cross section#set of 
[57], which includes seven cross sections# for electronic 
excitations and cross section# for ionization as well as 
cross section# for momentum transfer in elastic collisions. 
Transport data required as input in the "uid models are 
calculated using the same set of cross sections#for electron 
scattering in Ne.

In !gure#1(a) we show the electron mobility (multiplied by 
the gas number density) as a function of the reduced electric 
!eld E/n0, and in !gure#1(b) the diffusion coef!cient is shown. 
Variation of the ionization rate coef!cient and mean energy 
are shown on panels, 1(c) and 1(d), respectively. We see that 
the ionization rate becomes signi!cant at the higher values of 
E/n0 when suf!cient electrons have enough energy to undergo 
ionization. From the pro!les of the mean energy, we observe 
four distinct regions of transport as E/n0 increases. First, there 
is an initial plateau region where the electron energy is thermal 
( !kT3 /2 0.038 eV). Second, there is a region of sharp rise as 
the electrons start to rapidly gain the energy from the electric 
!eld. Third, there is a second small plateau region due to large 
energy loss of the electrons as the inelastic channels become 
important. Finally, there is another region of rapid rise, as both 
the elastic and inelastic processes drop off with high energy, 
and the electrons start to rapidly gain energy from the strong 
electric !eld.

In !gures#2(a) and (b) we display the rate coef!cients 
for momentum transfer in elastic collisions and the average 
energy loss in one energy relaxation time ! !

e
1, through non-

elastic processes, respectively.
In !gure#3(a) we show the rate coef!cients as a function 

of the mean electron energy for all collision processes. We 
compare the rate coef!cients for momentum transfer in elastic 
collisions, the rate coef!cient for total inelastic rate (sum of 
all rates for inelastic processes without ionization) and the 
ionization rate in !gure#3(b). The ionization rate is signi!cant 
for relatively high mean energies (i.e. high E/n0) and is essen-
tial for modeling of streamers. From !gure#3(b) we see that 
the ionization rate dominates the total inelastic rate for mean 
energies higher than 25 eV which re"ects the energy depend-
ence and magnitude of the cross sections#for ionization and 
electronic excitation.

5. Simulation conditions

In this work we consider 1D geometry and we simulate nega-
tive planar fronts. All "uid models are simulated in noble gas 
Ne and molecular gas N2 at standard temperature and pressure 
(STP). The electric !eld ö=E eE x (where öex is the unit vector 
in the x direction) drives the dynamics. We take E as a posi-
tive value; therefore electrons drift to the left, and negative 
streamer ionization fronts move to the left as well.

5.1. Boundary conditions

To create steady propagation conditions for the negative front, 
the electric !eld on the left boundary x  =   0 is !xed to the time 
independent value E0:

Plasma Sources Sci. Technol. 24 (2015) 065002
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( ) = >E t E0, 0.0 (22)

The electric !eld for x  >   0 is calculated by integrating equa-
tion#(10) numerically over x, with (22) as a boundary condi-
tion. The right boundary is located at x  =   L; in all calculations 

we set the system length L to 10 mm and we use 8500 grid 
points, so that the grid spacing is about 1.18 µm.

Homogeneous Neumann numerical boundary conditions 
are imposed for all conserved variables in all models on both 
of the ends of the system. However, all calculations end before 

Figure 1.  (a) Mobility, (b) longitudinal and transverse diffusion coef!cient, (c) ionization rate and (d) mean energy, for electrons in Ne as 
a function of the reduced electric !eld E/n0. These coef!cients are used as input for the !rst-order model. The data are obtained from our 
multi-term solution of the Boltzmann equation.

Figure 2.  Input data for the high-order "uid model in neon: (a) Average collision frequency for momentum transfer in elastic collisions ! m, 
normalized by the neutral gas density n0 and (b) the average energy lost in one energy relaxation time ! !

e
1, through non-elastic processes. 

Both quantities are shown as a function of the mean electron energy.

(b)(a)

Plasma Sources Sci. Technol. 24 (2015) 065002
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the ionization reaches the boundary, in other words, before the 
boundary conditions start to become relevant [58].

5.2. Initial conditions

We start all simulations with the same initial Gaussian distri-
bution for electrons and ions

( ) ( )
σ

| = !
!

=

!

"
#

$

%
&n x n

x x* exp ,t 0
0

2

2 (23)

where we have chosen = !n* 2 1018 m! 3, x0  =   9 mm and 
σ = × −2.94 10 5 mm. The initial conditions for the average 
electron velocity, average electron energy and average elec-
tron energy "ux are taken to be spatially homogeneous. These 
quantities are assumed to be relaxed to the background elec-
tric !eld when the simulation starts, with the values for the 
!eld given by a multi term solution of BoltzmannÕs equation, 
as already discussed in section#5.

5.3. Numerical method

The LEA and LFA "uid models are spatially discretized using 
the scheme described in [59]. The high-order "uid model is 
discretized using FORCE scheme [60, 61]. As we already 
mentioned above, for all cases our spatial grid consisted of 
8500 points, with a spacing of about 1.18 µm. Numerous 
studies have been devoted to the comparison of the accuracy 
of numerical schemes for advection problems in different situ-
ations (see e.g. [62Ð66]). In the present paper, we explicitly 
do not investigate the effect of the numerical schemes on the 
simulation models. Instead, we use a small enough time step 
and spatial resolution so that the results are essentially inde-
pendent of the numerical scheme, see also section#7.

5.4. Time stepping

For the time integration we use explicit trapezoidal rule for the 
LFA and LEA models, and the classical fourth-order RungeÐ
Kutta 4 (RK4) scheme [67] for the high order model. With 

such an explicit time stepping method, there are typically at 
least three restrictions on ∆t [67Ð69]:

   ! < !t C x v/ CFL condition,a (24)

! ! !! < !t C x D/ explicit diffusion limit,d e
2 (25)

( ) ! ! !! µ∆ <t n e/ dielectric relaxation limit,e e (26)

where ∆x is the spatial step size, De the diffusion coef!cient, 
!  the permittivity, µe the electron mobility, ne the electron den-
sity and e the elementary charge. Ca and Cd are the maximal 
Courant numbers for advection and diffusion equations#[70]. 
The Courant number depends on the particular time-integra-
tion method and space discretization. Note that the !rst two 
conditions should actually be combined and that the last con-
dition does not depend on the transport scheme used for the 
electrons.

The CFL time step restriction for the high order "uid model 
is given by the following formula

!
β ε

!
!

t C
x m2 3

2 max
,h (27)

where Ch is the maximal Courant number [19].
As stated above, we here focus on the accuracy of the 

models, not on their computational ef!ciency. Therefore, we 
have simply used a very small constant time step of 0.1 ps for 
all models, satisfying all the above conditions.

5.5. What to do when !n 0e ?

In many plasma "uid models the transport coef!cients depend 
on the mean energy. However, the models typically contain 
equations#for the evolution of the energy density ( !=Q n ). To 
get the mean energy at every point, we would like to simply 
compute

! = Q n/ . (28)

Unfortunately, this simple expression leads to problems where 
!n 0, not only because one can not divide by zero numerically, 

Figure 3.  Rate coef!cients (1-momentum transfer in elastic collisions, 2Ð8 electronic excitations and 9-ionization) in neon as a function of 
the electron energy, calculated with the multi-term solution of the Boltzmann equation#and (b) momentum transfer rate, total inelastic rate 
and ionization rate. For reference, the ionization energy of neon is about 21.6 eV.
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but also because round-off errors get large. Therefore, we use 
the following regularization:

! ( )
!

" !

"
=

+

+

Q E

n
,f0

0
 (29)

where ( )! Ef  is the relaxed mean energy in an electric !eld 
of strength E, and ! 0 is a small density. Using equation#(29) 
instead of equation#(28) makes no difference where !!n 0. 
But where !!n 0, using (29) ensures that the mean energy is 
approximately relaxed to the background electric !eld. For the 
results shown in section#6, we have used ! = 100

12 m! 3.

5.6. Implementation difficulties

We here make use of explicit time stepping. There are two 
reasons for that: implicit schemes are tricky to implement 
for models that depend on tabulated input data and implicit 
schemes are computationally much more costly (per time 
step). For time-dependent simulations one is bound to CFL-
like time step restrictions for accuracy, even with an implicit 
scheme. Therefore, explicit schemes are often more prac-
tical. On the other hand, the use of explicit time stepping has 
some implications for the numerical stability of the different 
models.

With the LFA model we did not encounter any problems. 
With the LEA model, oscillations in the electron energy 
occurred for the higher !elds in nitrogen (see section#6). 
Such oscillations were also observed in [71], where the LEA 
model was described in quite some detail. Instead of using 
an implicit scheme, as in [71], we have increased the value 
of ! 0 and decreased the time step, as described in the pre-
vious sections. Although this works, it is a far from perfect 
solution.

The high-order model is even more sensitive to any source 
of oscillations due to lack of explicit diffusion present in 
both LFA and LEA. The pure hyperbolic nature of the equa-
tions#forces any non-smoothness (caused by discrete nature of  
the input data) in the solution to drift in (or out) of the domain.

6. Comparison results

In this section# we compare the simulation results obtained 
with the "uid models and the PIC/MC model. As mentioned 
before, the simulations are performed in nitrogen and neon 
at STP. For Ne we consider the following externally applied 
electric !elds: 130, 170, 210, 350 and 460 Td, while for N2 
we consider electric !elds of 350, 460, 590, 770 and 1000 Td. 
We use higher !elds for nitrogen because it is a molecular gas, 
while neon is a noble gas.

Before we proceed to the actual comparisons, we would 
like to emphasize one more time that the same collisional 
cross-sections have been used for the particle model as for the 
generation of the transport data for the "uid models.

6.1. Basic comparison of planar fronts in Ne

In !gure#4 the velocities of planar fronts as a function of the 
external reduced electric !eld for Ne and N2 are shown. These 
velocities are calculated by following the time evolution of a 
certain level ( ! n2 *, see equation#(23)) of the electron density 
at the streamer front. In both gases, the LFA model shows the 
largest deviation with the PIC/MC results. The front velocity 
is always too low with this model, with larger deviations at 
higher !elds.

The LEA and high-order model perform about equally 
good. Note that in neon their predictions are remarkably sim-
ilar. For lower !elds in nitrogen, LEA is almost indistinguish-
able from PIC/MC, while for higher !elds it is about 10% 
slower. On the other hand, the high order model slightly over-
estimates the velocity, and has a better agreement with PIC/
MC at higher !elds.

As expected, the LFA model has the lowest front veloci-
ties: with the local !eld approximation, there is no energy 
transport. The LEA and high-order model include energy 
transport, which leads to higher electron energies at the edge 
of the front, and thus faster growth.

In !gure#5 we show the relative difference of the electron 
density in the streamer channel compared with PIC/MC as a 

Figure 4.  Velocities of planar fronts as a function of the electric !eld obtained with all the models in Ne (a) and in N2 (b). We remark that 
the negative sign of all velocities is removed here.
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function of E/n0. In neon, the LFA model shows the largest 
deviation: it systematically underestimates the electron den-
sity by up to 18% and 13% for Ne and N2 respectively. The 
difference is larger for higher electric !elds. The LEA model 
does slightly better than high-order model, with both showing 
deviations of up to 5%.

In nitrogen, the LFA model shows the best agreement for 
lower electric !elds. At higher electric !elds, it underesti-
mates the electron density in the channel. On the other hand, 
the LEA and high-order model overestimate the electron den-
sity. The LEA model does slightly better, and its results seem 
to improve for higher !elds.

6.2. Comparison of average electron energies in different 
models

In many applications it is important to be able to correctly cal-
culate the space resolved pro!les of the average electron ener-
gies. The LEA and high order "uid model can calculate such 
pro!les as they contain an equation# for the electron energy 

density, unlike the LFA model. If we assume that in the LFA 
model the electron energy instantaneously relaxes to the elec-
tric !eld, we can calculate electron energies directly from the 
!eld. In !gure#6 electron mean energy pro!les for the four 
models (LFA, LEA, high order and PIC/MC) are presented, 
at 8.5 ns in Ne at 170 Td. We have also included the pro!les 
of the electric !eld and the electron density obtained from 
the high order model to indicate the streamer head position. 
We have shifted all the pro!les to align them with the particle 
model for comparison.

In !gure#6 energy pro!les are shown for neon (at 8.5 ns, 170 
Td) and nitrogen (at 6.0 ns, 350 Td). The LEA and high-order 
model give almost the same energy pro!le in the channel, but 
near the front the high-order model captures the slope in the 
mean energy slightly better. Because the high-order model 
contains balance equations# for the momentum and average 
energy "ux, it can give a better description of the front region.

Not surprisingly, the LFA model gives a poor prediction 
for the mean energy in the channel. The reason is that in 
this region the electric !eld is entirely screened in 1D (when 

Figure 5.  The relative differences of the electron densities in the channel of the negative planar fronts from all "uid models compared with 
PIC/MC as a function of reduced electric !eld in Ne (a) and in N2 (b).

Figure 6.  The average electron energy in the four different models. Left: results for neon at 8.5 ns and 170 Td. Right: results for nitrogen 
at 6.0 ns and 350 Td. Pro!les of the electric !eld and the electron number density from the high order "uid model are also included, to 
indicate the location of the front. For clarity, the energy pro!les are shifted to align with the PIC/MC curve.
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! =E 0t 0 ), and therefore LFA predicts a (thermal) mean energy 
of 0.038 eV. What is surprising however, is that the LFA and 
LEA model predict a similar slope near the front.

The particle model suffers from a lack of electrons where 
the density goes to zero, and stochastic noise is present. In 
!gure#6, the particle model predicts a mean electron energy of 
around 7 eV and 1 eV for Ne and N2, respectively.

6.3. Average speed and average energy "ux

In this section#we illustrate the features of streamers that are 
captured by the high order "uid model, namely the average 
electron speed and average electron energy "ux. The average 
electron speed can be properly described by models that con-
tain a momentum balance equation# (i.e. no drift-diffusion 
approximation) [13, 14, 16, 19]. In !gure#7 we show the 
average electron speed and average electron energy "ux for 
Ne. In the region ahead of the front, where there is a con-
stant electric !eld, the average electron speed have a char-
acteristic slope, a non-local effect. In contrast to this region, 
in the streamer channel average electron speed is essentially 
zero. This follows from the much faster electron momentum 
relaxation than electron energy relaxation. As illustrated by 
Dujko et al [1] for electrons in N2, the collision frequency 
for momentum relaxation is almost !ve orders of magnitude 
higher than the collision frequency for energy transfer. The 
average electron energy "ux is often explicitly neglected [13, 
14, 72]. The importance of the average electron energy "ux 
balance equation# was recently highlighted by Becker and 
Loffhagen [16] and by Markosyan et al [19].

7. Discussion

In this paper we have compared three "uid models to Monte 
Carlo simulations, using input data based on the same cross 
sections. We have investigated how well the "uid models can 
capture the physics of an ionization wave in 1D. Our focus 
was on the physical predictions of the models, not on prac-
tical aspects such as ease of implementation, availability of 

transport data, numerical stability or computational cost. 
Therefore, our results should not be interpreted as de!nite 
advice on which model to use.

Since "uid models of different order have different math-
ematical morphologies and are non-linearly coupled to 
the Poisson equation, the sensitivity of results to the used 
numerical scheme, grid size, time step, boundary condition 
and spatial dimension can differ. For example, the presence 
of adaptive (or static) grid re!nement will produce more and 
more uncertainties. In the case of adaptive grid re!nement one 
should study the in"uence of the re!nement criterion on the 
simulation results [73]. The choice of mesh adaptation can 
be#also an issue [74, 75]. In the higher dimensions the uncer-
tainties associated with (complex) geometries and rough-
nesses of the interfaces become very critical. It is very hard 
to predict how stable certain model will be under these more 
realistic conditions.

An additional source of uncertainty are the transport coef!-
cients. In earlier studies, it was observed that small differences 
in cross-sections can produce large differences in plasma 
parameters [76, 77]. The sensitivity of the models to transport 
coef!cients should be investigated.

The complexity of models depends on the number of the 
moments of the Boltzmann equation#that are used. The more 
physics we put in a model, the more complex it becomes: there 
are more equations#to be solved, more initial and boundary 
conditions to be speci!ed and more input data is required. 
With the complexity of the system the associated uncertain-
ties also grow. Therefore, it is up to the modeler to decide for 
given type of discharge and under given conditions (geom-
etries, parameter range, etc) what type of model to consider.

The classical "uid model is equally valid for both the elec-
trons and ions. If ions are going to be included, then the most 
important ion species must be identi!ed and transport data 
for these species must be either collected from the literature, 
or should be calculated by solving BoltzmannÕs equation#or 
by a Monte Carlo simulation technique. In particular, the ion 
dynamics play an important role in the propagation of nega-
tive planar ionization fronts in light gases as well as for so-
called long streamers.

The local energy approximation model for is invalid for 
ions. The "uid equations#in this model are derived assuming the 
Ôclassical theoryÕ of charged particle transport which is based 
on the two-term approximation for solving the Boltzmann 
equation# [78, 79]. However, the two term approximation is 
never valid for ions as even in elastic collisions there is a large 
fractional energy exchange between ions and neutral particles. 
As a consequence, the ion velocity distribution is generally 
signi!cantly distorted from spherical symmetry in velocity 
space [80, 81]. The local energy approximation model has 
been used many times in the past for electrons only while for 
ions usually the classical "uid model was assumed [13, 14]. 
Alternatively, one may employ the Wannier relation to relate 
the ion temperature and temperature of the background gas 
[82] in association with the Einstein relation for evaluation of 
the diffusion coef!cient [83].

The high-order "uid model is, however, equally valid 
for ions and electrons. In principle, the RHS of the balance 

Figure 7.  The same instant and plot as in !gure#6, but now average 
electron velocity and average electron energy "ux are plotted for Ne 
at externally applied electric !eld of 170 Td.
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equation#for ions can be easily modi!ed to account for all rel-
evant collision processes. However, it should be noted that due 
to strong anisotropy of the ion distribution function in velocity 
space, the temperature tensor cannot be easily modi!ed to a 
scalar property. Strictly speaking, two balance equations#are 
required for momentum and two equations# for the balance 
of the energy "ux. This in turn will generate new unknowns 
in the "uid equations# and new closure assumptions will be 
needed to close the system of equations. In addition, colli-
sion frequencies for momentum and energy transfers in colli-
sions between ions and neutral particles are required as input. 
However, for practical purposes model collision operators can 
be used to derive analytical expressions for the components of 
temperature tensor as discussed in [84, 85].

An integral part of plasma simulations should be veri!ca-
tion and validation (V and V) [86, 87]. Indeed, for just this 
purpose, there has recently been an explicit call for ensuring 
the !delity of future simulation tools [22, 88, 89]. In the !eld 
of radio frequency discharges some pioneering work has 
been done by Surendra [90]. Turner et al [91] have developed 
benchmark solutions for capacitive discharges and showed 
that a number of independently developed particle-in-cell 
simulations can reproduce the benchmark solutions. In par-
ticular, the swarm literature contains many models suitable for 
benchmarking plasma models in the free-diffusion limit [23, 
52, 54, 77].

Therefore, we believe that uncertainty quanti!cation 
together with V&V should be the next step in the modelling 
of the low-pressure plasmas. These techniques are success-
fully adopted by related !elds such as computational "uid 
dynamics, computational !nance, climate modeling, astro-
physics etc [92Ð97].

8. Conclusions

We have compared the performance of three plasma "uid 
models: a !rst order model based on the local !eld approxi-
mation (LFA), a second order model based on the local energy 
approximation (LEA) and a high order model. The test prob-
lems we considered were 1D ionization waves in nitrogen and 
neon, in a wide range of electric !elds. As a reference model, 
we have used a PIC/MC code.

The classical LFA model is the simplest model considered. 
Despite the simplifying assumptions present in the model 
and the strong recommendations by Grubert et al [98] to use 
LEA instead of LFA, we !nd that using the LFA model gives 
reasonably good results. Of course, it can not calculate the 
electron energy, but if one is interested in general characteris-
tics like velocity, ionization level or general shape of the dis-
charge, this model can be the !rst choice.

Compared to the LFA model, the LEA and high-order 
model gave better predictions for the discharge velocity. 
Whereas the LFA model underestimates the ionization density 
in the channel, these models overestimate this density. Both 
the LEA and high-order model give good predictions for the 
energy pro!le in the channel, but the high order model gives 
a better description of the energy slope in the discharge front.
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